21 Propiedades de las derivadas

Proposición 21.1.

Sean f\displaystyle f y g\displaystyle g derivables en x0\displaystyle x_{0} y λ\displaystyle\lambda\in\mathbb{R}, entonces:

  •  

    f+g\displaystyle f+g es derivable en x0\displaystyle x_{0} y (f+g)(x0)=f(x0)+g(x0)\displaystyle(f+g)^{\prime}(x_{0})=f^{\prime}(x_{0})+g^{\prime}(x_{0}).

  •  

    λf\displaystyle\lambda f es derivable en x0\displaystyle x_{0} y (λf)(x0)=λf(x0)\displaystyle(\lambda f)^{\prime}(x_{0})=\lambda f^{\prime}(x_{0}).

  •  

    fg\displaystyle f\cdot g es derivable en x0\displaystyle x_{0} y (fg)(x0)=f(x0)g(x0)+f(x0)g(x0)\displaystyle(f\cdot g)^{\prime}(x_{0})=f^{\prime}(x_{0})g(x_{0})+f(x_{0})g^{% \prime}(x_{0})

  •  

    Si g(x0)0,fg\displaystyle g(x_{0})\neq 0,\frac{f}{g} es derivable en x0\displaystyle x_{0} y (fg)(x0)=f(x0)g(x0)f(x0)g(x0)g2(x0)\displaystyle(\frac{f}{g})(x_{0})=\frac{f^{\prime}(x_{0})g(x_{0})-f(x_{0})g^{% \prime}(x_{0})}{g^{2}(x_{0})}.

Demostración.
  •  
    (f+g)(x0)\displaystyle\displaystyle(f+g)^{\prime}(x_{0}) =lı´mh0(f+g)(x0+h)(f+g)(x0)h\displaystyle\displaystyle=\mathop{\operator@font l\acute{{\imath}}m}\limits_{% h\to 0}\frac{(f+g)(x_{0}+h)-(f+g)(x_{0})}{h}
    =lı´mh0f(x0+h)+g(x0+h)(f(x0)+g(x0))h\displaystyle\displaystyle=\mathop{\operator@font l\acute{{\imath}}m}\limits_{% h\to 0}\frac{f(x_{0}+h)+g(x_{0}+h)-(f(x_{0})+g(x_{0}))}{h}
    =lı´mh0f(x0+h)f(x0)h+lı´mh0g(x0+h)g(h)h\displaystyle\displaystyle=\mathop{\operator@font l\acute{{\imath}}m}\limits_{% h\to 0}\frac{f(x_{0}+h)-f(x_{0})}{h}+\mathop{\operator@font l\acute{{\imath}}m% }\limits_{h\to 0}\frac{g(x_{0}+h)-g(h)}{h}
    =f(x0)+g(x0)\displaystyle\displaystyle=f^{\prime}(x_{0})+g^{\prime}(x_{0})

    Como f,g\displaystyle f,g son derivables en x0f(x0),g(x0)(f+g)(x0)=f(x0)+g(x0)\displaystyle x_{0}\Rightarrow f^{\prime}(x_{0}),g^{\prime}(x_{0})\in\mathbb{R% }\Rightarrow(f+g)^{\prime}(x_{0})=f^{\prime}(x_{0})+g^{\prime}(x_{0})\in% \mathbb{R} y f+g\displaystyle f+g es derivable.

  •  
    (λf)(x0)\displaystyle\displaystyle(\lambda f)^{\prime}(x_{0}) =lı´mh0(λf)(x0+h)(λf)(x0)h=lı´mh0λf(x0+h)λf(x0)h\displaystyle\displaystyle=\mathop{\operator@font l\acute{{\imath}}m}\limits_{% h\to 0}\frac{(\lambda f)(x_{0}+h)-(\lambda f)(x_{0})}{h}=\mathop{% \operator@font l\acute{{\imath}}m}\limits_{h\to 0}\frac{\lambda f(x_{0}+h)-% \lambda f(x_{0})}{h}
    =lı´mh0λf(x0+h)f(x0)h=lı´mh0λlı´mh0f(x0+h)f(x0)h\displaystyle\displaystyle=\mathop{\operator@font l\acute{{\imath}}m}\limits_{% h\to 0}\lambda\cdot\frac{f(x_{0}+h)-f(x_{0})}{h}=\mathop{\operator@font l% \acute{{\imath}}m}\limits_{h\to 0}\lambda\cdot\mathop{\operator@font l\acute{{% \imath}}m}\limits_{h\to 0}\frac{f(x_{0}+h)-f(x_{0})}{h}
    =λf(x0)\displaystyle\displaystyle=\lambda f^{\prime}(x_{0})
  •  
    (fg)(x0)=lı´mh0(fg)(x0+h)(fg)(x0)h=lı´mh0f(x0)g(x0+h)f(x0)g(x0)h==lı´mh0f(x0+h)g(x0+h)f(x0)g(x0+h)+f(x0)g(x0+h)f(x0)g(x0)h==lı´mh0g(x0+h)(f(x0+h)f(x0))h+lı´mh0f(x0)(g(x0+h)g(x0))h==lı´mh0g(x0+h)lı´mh0f(x0+h)f(x0)h+g(x0)lı´mh0g(x0+h)g(x0)h==f(x0)lı´mh0g(x0+h)+f(x0)g(x0)=g continua en x0f(x0)g(x0)+f(x0)g(x0)(f\cdot g)^{\prime}(x_{0})=\mathop{\operator@font l\acute{{\imath}}m}\limits_{% h\to 0}\frac{(f\cdot g)(x_{0}+h)-(f\cdot g)(x_{0})}{h}=\mathop{\operator@font l% \acute{{\imath}}m}\limits_{h\to 0}\frac{f(x_{0})g(x_{0}+h)-f(x_{0})g(x_{0})}{h% }=\\ =\mathop{\operator@font l\acute{{\imath}}m}\limits_{h\to 0}\frac{f(x_{0}+h)g(x% _{0}+h)-f(x_{0})\cdot g(x_{0}+h)+f(x_{0})g(x_{0}+h)-f(x_{0})g(x_{0})}{h}=\\ =\mathop{\operator@font l\acute{{\imath}}m}\limits_{h\to 0}\frac{g(x_{0}+h)(f(% x_{0}+h)-f(x_{0}))}{h}+\mathop{\operator@font l\acute{{\imath}}m}\limits_{h\to 0% }\frac{f(x_{0})\cdot(g(x_{0}+h)-g(x_{0}))}{h}=\\ =\mathop{\operator@font l\acute{{\imath}}m}\limits_{h\to 0}g(x_{0}+h)\cdot% \mathop{\operator@font l\acute{{\imath}}m}\limits_{h\to 0}\frac{f(x_{0}+h)-f(x% _{0})}{h}+g(x_{0})\cdot\mathop{\operator@font l\acute{{\imath}}m}\limits_{h\to 0% }\frac{g(x_{0}+h)-g(x_{0})}{h}=\\ =f^{\prime}(x_{0})\cdot\mathop{\operator@font l\acute{{\imath}}m}\limits_{h\to 0% }g(x_{0}+h)+f(x_{0})\cdot g^{\prime}(x_{0})\overset{g\text{ continua en }x_{0}% }{=}f^{\prime}(x_{0})g(x_{0})+f(x_{0})g^{\prime}(x_{0})
  •  

    Añadir.

Teorema 21.1.

Sea f:I\displaystyle f\colon I\to\mathbb{R} con I=(a,b)\displaystyle I=(a,b). Si f\displaystyle f es derivable en x0\displaystyle x_{0}, entonces f\displaystyle f es continua en x0\displaystyle x_{0}.

Demostración.

Dado xI\displaystyle x\in I, xx0\displaystyle x\neq x_{0},

f(x)f(x0)=(f(x)f(x0))xx0(xx0)\displaystyle f(x)-f(x_{0})=\frac{(f(x)-f(x_{0}))}{x-x_{0}}(x-x_{0})

Además, tenemos que

lı´mxx0f(x)f(x0)=lı´mxx0f(x)f(x0)xx0lı´mxx0xx0=f(x0)0=0\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to x_{0}}f(x% )-f(x_{0})=\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to x_{0}}\frac% {f(x)-f(x_{0})}{x-x_{0}}\cdot\mathop{\operator@font l\acute{{\imath}}m}\limits% _{x\to x_{0}}x-x_{0}=f^{\prime}(x_{0})\cdot 0=0

Por tanto, lı´mxx0(f(x)f(x0))=0\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to x_{0}}(f(% x)-f(x_{0}))=0.

lı´mxx0f(x)=lı´mxx0(f(x)f(x0)+f(x0))=lı´mxx0(f(x)f(x0))+lı´mxx0f(x0)=f(x0)\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to x_{0}}f(x% )=\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to x_{0}}(f(x)-f(x_{0})% +f(x_{0}))=\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to x_{0}}(f(x)% -f(x_{0}))+\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to x_{0}}f(x_{% 0})=f(x_{0})

Luego f\displaystyle f es continua en x0\displaystyle x_{0} por definición. ∎

Teorema 21.2 (Regla de la cadena).

Si f\displaystyle f es derivable en x0\displaystyle x_{0} y g\displaystyle g es derivable en f(x0)\displaystyle f(x_{0}), entonces gf\displaystyle g\circ f es derivable en x0\displaystyle x_{0} y

(gf)(x0)=g(f(x0))f(x0)\displaystyle(g\circ f)^{\prime}(x_{0})=g^{\prime}(f(x_{0}))f^{\prime}(x_{0})
Demostración.

No vista en clase. ∎

Ejemplo.
f(x)={x2sin1x+2x2x00x=0\displaystyle f(x)=\begin{dcases}x^{2}\sin\frac{1}{x}+2x^{2}\quad x\neq 0\\ 0\quad x=0\end{dcases}
  1. 1.

    f\displaystyle f es continua en x0\displaystyle x\neq 0: lı´mxx0f(x)=f(x0)?\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to x_{0}}f(x% )=f(x_{0})? lı´mxx0x2sin1x+2x2=lı´mxx0x2sin1x+lı´mxx02x2=x02sin1x0+2x02\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to x_{0}}x^{% 2}\sin\frac{1}{x}+2x^{2}=\mathop{\operator@font l\acute{{\imath}}m}\limits_{x% \to x_{0}}x^{2}\sin\frac{1}{x}+\mathop{\operator@font l\acute{{\imath}}m}% \limits_{x\to x_{0}}2x^{2}=x^{2}_{0}\sin\frac{1}{x_{0}}+2x^{2}_{0} f\displaystyle f es continua en x=0\displaystyle x=0? lı´mx0x2sin1x+2x2=?lı´mx0x2sin1x+lı´mx02x2=0=lı´mx0x2sin1x=0+0=0\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0}x^{2}% \sin\frac{1}{x}+2x^{2}\overset{?}{=}\mathop{\operator@font l\acute{{\imath}}m}% \limits_{x\to 0}x^{2}\sin\frac{1}{x}+\underbrace{\mathop{\operator@font l% \acute{{\imath}}m}\limits_{x\to 0}2x^{2}}_{=0}=\mathop{\operator@font l\acute{% {\imath}}m}\limits_{x\to 0}x^{2}\sin\frac{1}{x}=0+0=0. |x2sin1x|=|x2||sin1x|=x2|sin1x|x2x0lı´mx0|x2sin1x|=0\displaystyle\left|x^{2}\sin\frac{1}{x}\right|=\left|x^{2}\right|\left|\sin% \frac{1}{x}\right|=x^{2}\cdot\left|\sin\frac{1}{x}\right|\leq x^{2}\overset{x% \rightarrow 0}{\longrightarrow}\mathop{\operator@font l\acute{{\imath}}m}% \limits_{x\to 0}\left|x^{2}\sin\frac{1}{x}\right|=0. f\displaystyle f es derivable en x=x00?\displaystyle x=x_{0}\neq 0? f(x)=x2sin1x+2x2\displaystyle f(x)=x^{2}\sin\frac{1}{x}+2x^{2} 1x\displaystyle\frac{1}{x} es derivable en x00\displaystyle x_{0}\neq 0, sin(y)\displaystyle\sin(y) es derivable en y=1x0R.C.sin1x\displaystyle y=\frac{1}{x_{0}}\overset{R.C.}{\Rightarrow}\sin\frac{1}{x} es derivable en x0\displaystyle x_{0}. Por tanto, f\displaystyle f es derivable en {0}\displaystyle\mathbb{R}\setminus\{0\}. f\displaystyle f es derivable en x=0\displaystyle x=0?

    f(x)={2xsin1x+x2cos1x1x2+4xx0??x=0\displaystyle f^{\prime}(x)=\begin{cases}2x\sin\frac{1}{x}+x^{2}\cos\frac{1}{x% }\cdot-\frac{1}{x^{2}}+4x\qquad x\neq 0\\ ??\qquad x=0\end{cases}

    lı´mx0f(x)=lı´mx02xsin1xcos1x+4x\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0}f^{% \prime}(x)=\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0}2x\sin% \frac{1}{x}-\cos\frac{1}{x}+4x. Veamos que lı´mx0cos1x\displaystyle\cancel{\exists}\mathop{\operator@font l\acute{{\imath}}m}\limits% _{x\to 0}\cos\frac{1}{x}. Consideramos xn=12πncos112πn=cos2πnn=1\displaystyle x_{n}=\frac{1}{2\pi n}\Rightarrow\cos\frac{1}{\frac{1}{2\pi n}}=% \cos 2\pi nn=1. Tambien yn=12πn+πn0\displaystyle y_{n}=\frac{1}{2\pi n+\pi}\overset{n\rightarrow\infty}{% \longrightarrow}0. cos1yn=cos112πn+π=cos2πn+π=1\displaystyle\cos\frac{1}{y_{n}}=\cos\frac{1}{\frac{1}{2\pi n+\pi}}=\cos 2\pi n% +\pi=-1. Luego

    lı´mn2xnsin1xncos1xn+4xn=1\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{n\to\infty}2x_% {n}\sin\frac{1}{x_{n}}-\cos\frac{1}{x_{n}}+4x_{n}=-1
    lı´mn2ynsin1yncos1yn+4yn=1\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{n\to\infty}2y_% {n}\sin\frac{1}{y_{n}}-\cos\frac{1}{y_{n}}+4y_{n}=1

    Como 11\displaystyle 1\neq-1, lı´mx0f(x)\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0}f^{% \prime}(x) no existe \displaystyle\Rightarrow f\displaystyle f es derivable en x=0\displaystyle x=0? No sabemos nada. f(0)=lı´mh0f(0+h)f(0)h=lı´mh0h2sin1h+2h2h=lı´mh0hsin1h+2h=0\displaystyle f^{\prime}(0)=\mathop{\operator@font l\acute{{\imath}}m}\limits_% {h\to 0}\frac{f(0+h)-f(0)}{h}=\mathop{\operator@font l\acute{{\imath}}m}% \limits_{h\to 0}\frac{h^{2}\cdot\sin\frac{1}{h}+2h^{2}}{h}=\mathop{% \operator@font l\acute{{\imath}}m}\limits_{h\to 0}h\sin\frac{1}{h}+2h=0 (por sandwich). Por tanto, f\displaystyle f es derivable en x=0\displaystyle x=0. f\displaystyle f es derivable en \displaystyle\mathbb{R}. f\displaystyle f^{\prime} es continua en \displaystyle\mathbb{R}:

    •  

      x0f\displaystyle x\neq 0\Rightarrow f^{\prime} es continua

    •  

      x=0:\displaystyle x=0: lı´mx0f(x)No existe=?f(0)=0f\displaystyle\underbrace{\mathop{\operator@font l\acute{{\imath}}m}\limits_{x% \to 0}f^{\prime}(x)}_{\text{No existe}}\overset{?}{=}f^{\prime}(0)=0% \Rightarrow f^{\prime} no es continua en x=0\displaystyle x=0.

    Su derivada no es continua.

Podemos distinguir varios tipos de funciones según su continuidad y la continuidad de sus derivadas:

  •  

    Continuas: por ejemplo, f(x)=|x|\displaystyle f(x)=\left|x\right|. Se dice que f(x)𝒞0,𝒞\displaystyle f(x)\in\mathscr{C}^{0},\mathscr{C}.

  •  

    Derivada no continua: por ejemplo, la de Ejemplo: f(x)\displaystyle f(x) es continua y derivable pero f(x)\displaystyle f^{\prime}(x) no es continua.

  •  

    Derivada continua: lı´mx0f(x)=2=f(0)\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0}f^{% \prime}(x)=2=f^{\prime}(0). Se dice que f(x)𝒞1\displaystyle f(x)\in\mathscr{C}^{1}. Si la segunda derivada es continua, f(x)𝒞2\displaystyle f(x)\in\mathscr{C}^{2}, etc.

Teorema 21.3 (Teorema del extremo interior).

Sea c\displaystyle c un punto interior del intervalo I\displaystyle I en el que f:I\displaystyle f\colon I\to\mathbb{R} tiene un extremo relativo. Si la derivada de f\displaystyle f en c\displaystyle c existe, entonces f(c)=0\displaystyle f^{\prime}(c)=0.

Demostración.

Supongamos que f\displaystyle f tiene un máximo relativo en cI\displaystyle c\in I. La demostración del caso de un mínimo relativo es similar. Si f(c)>0\displaystyle f^{\prime}(c)>0, entonces por el teorema 16.5 existe δ>0\displaystyle\delta>0 tal que

f(x)f(c)xc>0 para x(cδ,c+δ),xc.\displaystyle\frac{f(x)-f(c)}{x-c}>0\text{ para }x\in(c-\delta,c+\delta),x\neq c.

Si xV\displaystyle x\in V y x>c\displaystyle x>c, se tiene entonces

f(x)f(c)=(xc)f(x)f(c)xc>0\displaystyle f(x)-f(c)=(x-c)\cdot\frac{f(x)-f(c)}{x-c}>0

Pero esto contradice la hipótesis de que f\displaystyle f tiene un máximo relativo en c\displaystyle c. Por tanto, no se puede tener f(c)>0\displaystyle f^{\prime}(c)>0. De manera similar, no se puede tener f(c)<0\displaystyle f^{\prime}(c)<0. Por lo tanto, se debe tener f(c)=0\displaystyle f^{\prime}(c)=0. ∎