24 Polinomio de Taylor

Definición 24.1.

Sea f\displaystyle f una función n\displaystyle n veces derivable en x0\displaystyle x_{0}. Llamamos polinomio de Taylor de grado n\displaystyle n de f\displaystyle f en x0\displaystyle x_{0} al unico polinomio p(x)\displaystyle p(x) que cumpla que:

p(x0)=f(x0),p(x0)=f(x0),,p(n)(x0)=f(n)(x0)\displaystyle p(x_{0})=f(x_{0}),p^{\prime}(x_{0})=f^{\prime}(x_{0}),\ldots,p^{% (n)}(x_{0})=f^{(n)}(x_{0})

Veamos cuál es: dado un polinomio general de grado n\displaystyle n,

p(x)=a0+a1(xx0)++an(xx0)n\displaystyle p(x)=a_{0}+a_{1}(x-x_{0})+\cdots+a_{n}(x-x_{0})^{n}
  1. 1.

    p(x0)=f(x0)\displaystyle p(x_{0})=f(x_{0}). Si evaluamos el polinomio, p(x0)=a0+a1(x0x0)+an(x0x0)n=a0a0=f(x0)\displaystyle p(x_{0})=a_{0}+a_{1}(x_{0}-x_{0})+\cdots a_{n}(x_{0}-x_{0})^{n}=% a_{0}\Rightarrow a_{0}=f(x_{0}).

  2. 2.

    p(x0)=f(x0)p(x)=0+a1+a22(xx0)++ann(xx0)n1\displaystyle p^{\prime}(x_{0})=f^{\prime}(x_{0})\Rightarrow p^{\prime}(x)=0+a% _{1}+a_{2}\cdot 2(x-x_{0})+\cdots+a_{n}n(x-x_{0})^{n-1}. Como p(x0)=f(x0)\displaystyle p^{\prime}(x_{0})=f^{\prime}(x_{0}), p(x0)=a1=f(x0)\displaystyle p^{\prime}(x_{0})=a_{1}=f^{\prime}(x_{0}).

  3. 3.

    p′′(x0)=f′′\displaystyle p^{\prime\prime}(x_{0})=f^{\prime\prime}. p′′(x)=a22+a332(xx0)++ann(n1)(xx0)n2\displaystyle p^{\prime\prime}(x)=a_{2}2+a_{3}\cdot 3\cdot 2\cdot(x-x_{0})+% \cdots+a_{n}\cdot n\cdot(n-1)\cdot(x-x_{0})^{n-2}. Evaluando en x0,\displaystyle x_{0}, p′′(x0)=a22a2=f′′(x0)/2\displaystyle p^{\prime\prime}(x_{0})=a_{2}\cdot 2\Rightarrow a_{2}=f^{\prime% \prime}(x_{0})/2.

  4. 4.

    p′′′(x)=a332+a4332(xx0)++ann(n1)(n2)(xx0)n3p′′′(x0)=a332\displaystyle p^{\prime\prime\prime}(x)=a_{3}\cdot 3\cdot 2+a_{4}\cdot 3\cdot 3% \cdot 2(x-x_{0})+\cdots+a_{n}\cdot n\cdot(n-1)\cdot(n-2)\cdot(x-x_{0})^{n-3}% \Rightarrow p^{\prime\prime\prime}(x_{0})=a_{3}\cdot 3\cdot 2.

  5. 5.

    Lo hacemos hasta llegar a la derivada n\displaystyle n-esima: p(n)(x0)=f(n)(x0)ann!=f(n)(x0)an=f(n)(x0)n!\displaystyle p^{(n)}(x_{0})=f^{(n)(x_{0})}\Rightarrow a_{n}\cdot n!=f^{(n)}(x% _{0})\Rightarrow a_{n}=\frac{f^{(n)}(x_{0})}{n!}.

Luego el polinomio de Taylor de grado n\displaystyle n de f\displaystyle f en x0\displaystyle x_{0} es:

Pn,x0,f(x)=f(x0)+f(x0)(xx0)+f′′(x0)2!(xx0)2+f′′′(x0)3!(xx0)3=k=0nf(k)(x0)k!(xx0)k\displaystyle P_{n,x_{0},f}(x)=f(x_{0})+f^{\prime}(x_{0})(x-x_{0})+\frac{f^{% \prime\prime}(x_{0})}{2!}(x-x_{0})^{2}+\frac{f^{\prime\prime\prime}(x_{0})}{3!% }(x-x_{0})^{3}=\sum_{k=0}^{n}\frac{f^{(k)}(x_{0})}{k!}(x-x_{0})^{k}

Por ejemplo, el polinomio de grado 3\displaystyle 3 de f(x)=sinx\displaystyle f(x)=\sin x en el 0\displaystyle 0:

P3,0,f(x)=f(0)+f(0)(x0)+f′′(0)2!(x0)2+f′′′(0)3!(x0)3=x16x3\displaystyle P_{3,0,f}(x)=f(0)+f^{\prime}(0)(x-0)+\frac{f^{\prime\prime}(0)}{% 2!}(x-0)^{2}+\frac{f^{\prime\prime\prime}(0)}{3!}(x-0)^{3}=x-\frac{1}{6}x^{3}

ya que f(0)=sin0=0\displaystyle f(0)=\sin 0=0, f(x)=cosxf(0)=1\displaystyle f^{\prime}(x)=\cos x\Rightarrow f^{\prime}(0)=1, f′′(x)=sinxf′′(0)=0\displaystyle f^{\prime\prime}(x)=-\sin x\Rightarrow f^{\prime\prime}(0)=0, f′′′(x)=cosxf′′′(0)=1\displaystyle f^{\prime\prime\prime}(x)=-\cos x\Rightarrow f^{\prime\prime% \prime}(0)=-1.

Cuánto vale sin1?P(1)sin1\displaystyle\sin 1?\Rightarrow P(1)\approx\sin 1.

P(x)=xx36p(1)=116=56\displaystyle P(x)=x-\frac{x^{3}}{6}\Rightarrow p(1)=1-\frac{1}{6}=\frac{5}{6}

El error obtenido es: E=|p(1)sin1|=|56sin1|\displaystyle E=\left|p(1)-\sin 1\right|=\left|\frac{5}{6}-\sin 1\right|

Teorema 24.1.

Sea f𝒞n+1([a,b])\displaystyle f\in\mathscr{C}^{n+1}([a,b]) (derivable n+1\displaystyle n+1 veces y todas las derivadas son continuas). Entonces, para x,x0[a,b]\displaystyle x,x_{0}\in[a,b], xx0\displaystyle x\neq x_{0}, existe un c\displaystyle c entre x\displaystyle x, x0\displaystyle x_{0} tal que

f(x)=Pn,x0,f(x)+f(n+1)(c)(n1)!(xx0)n+1.\displaystyle f(x)=P_{n,x_{0},f}(x)+\frac{f^{(n+1)}(c)}{(n-1)!}(x-x_{0})^{n+1}.
Demostración.

Sea x,x0[a,b]\displaystyle x,x_{0}\in[a,b] con xx0\displaystyle x\neq x_{0}. Definimos la siguiente funcion:

F(t)=f(x)f(t)f(t)(xt)f(n)(t)(xt)nn!\displaystyle F(t)=f(x)-f(t)-f^{\prime}(t)(x-t)-\cdots-f^{(n)}(t)\frac{(x-t)^{% n}}{n!}

con t(x,x0)(x0,x)\displaystyle t\in(x,x_{0})\vee(x_{0},x).

  •  

    F(x0)=f(x)Pn,t,f(x)\displaystyle F(x_{0})=f(x)-P_{n,t,f}(x).

Definimos tambien G(t)=F(t)(xtxx0)n+1F(x0)\displaystyle G(t)=F(t)-(\frac{x-t}{x-x_{0}})^{n+1}F(x_{0})

  •  

    G\displaystyle G es continua en [x,x0]\displaystyle[x,x_{0}] (o [x0,x]\displaystyle[x_{0},x]) ya que f𝒞n+1([a,b])\displaystyle f\in\mathscr{C}^{n+1}([a,b]).

  •  

    G\displaystyle G es derivable en (x,x0)\displaystyle(x,x_{0}) o (x0,x)\displaystyle(x_{0},x) ya que f𝒞n([a,b])\displaystyle f\in\mathscr{C}^{n}([a,b]) y f\displaystyle f es n+1\displaystyle n+1 derivable en [a,b]\displaystyle[a,b].

Tenemos que:

G(x)=F(x)(xxxx0)n+1F(x0)=F(x)\displaystyle G(x)=F(x)-(\frac{x-x}{x-x_{0}})^{n+1}F(x_{0})=F(x)
G(x0)=F(x0)(xx0xx0)n+1F(x0)=0\displaystyle G(x_{0})=F(x_{0})-(\frac{x-x_{0}}{x-x_{0}})^{n+1}\cdot F(x_{0})=0

Veamos cuanto vale F(x)\displaystyle F(x):

F(x)=f(x)f(x)f(t)(xx)f(n)(x)(xx)nn!=0\displaystyle F(x)=f(x)-f(x)-f^{\prime}(t)(x-x)-\cdots-f^{(n)}(x)\frac{(x-x)^{% n}}{n!}=0

Por tanto, {G(x)=F(x)=0G(x0)=0G(x)=G(x0)=0\displaystyle\begin{cases}G(x)=F(x)=0\\ G(x_{0})=0\end{cases}\Rightarrow G(x)=G(x_{0})=0 Por el teorema de Rolle, c(x,x0)\displaystyle\exists c\in(x,x_{0}) o (x0,x)\displaystyle(x_{0},x) tal que G(c)=0\displaystyle G^{\prime}(c)=0, es decir,

G(t)=F(t)F(x0)(xx0)n+1(n+1)(xt)n(1)\displaystyle G^{\prime}(t)=F^{\prime}(t)-\frac{F(x_{0})}{(x-x_{0})^{n+1}}% \cdot(n+1)(x-t)^{n}(-1)

Cuánto vale F(t)\displaystyle F^{\prime}(t)?

F(t)=f(t)f(2)(t)(xt)f(3)(t)2!(xt)2f(4)(t)3!(xt)3f(n+1)(t)n!(xt)n==f(t)f(t)(1)f(2)(t)2!2(xt)(1)f(n)(t)n!(xt)n1(1)=f(n+1)(t)n!(xt)nF^{\prime}(t)=-f^{\prime}(t)-f^{(2)}(t)(x-t)-\frac{f^{(3)}(t)}{2!}(x-t)^{2}-% \frac{f^{(4)}(t)}{3!}(x-t)^{3}-\cdots\ \frac{f^{(n+1)}(t)}{n!}(x-t)^{n}=\\ =-f^{\prime}(t)-f^{\prime}(t)(-1)-\frac{f^{(2)}(t)}{2!}2(x-t)(-1)-\cdots-\frac% {f^{(n)}(t)}{n!}(x-t)^{n-1}(-1)=-\frac{f^{(n+1)}(t)}{n!}(x-t)^{n}

Por tanto,

G(t)=f(n+1)(t)n!(xt)nF(x0)(n+1)(xt)n(xx0)n+1(1)\displaystyle G^{\prime}(t)=\frac{-f^{(n+1)}(t)}{n!}(x-t)^{n}-\frac{F(x_{0})(n% +1)(x-t)^{n}}{(x-x_{0})^{n+1}}(-1)

Luego

0=G(c)=f(n+1)(c)n!(xc)n+F(x0)(n+1)(xc)n(xx0)n+1F(x0)=f(n+1)(c)(n+1)!(xx0)n+1\displaystyle 0=G^{\prime}(c)=\frac{-f^{(n+1)}(c)}{n!}(x-c)^{n}+\frac{F(x_{0})% (n+1)(x-c)^{n}}{(x-x_{0})^{n+1}}\Rightarrow F(x_{0})=\frac{f^{(n+1)}(c)}{(n+1)% !}(x-x_{0})^{n+1}

Además, hemos visto antes que F(x0)=f(x)Pn,x0,f(x)\displaystyle F(x_{0})=f(x)-P_{n,x_{0},f}(x). Luego f(x)=Pn,x0,f(x)+F(x0)\displaystyle f(x)=P_{n,x_{0},f}(x)+F(x_{0}). ∎

Ejemplo.

Aproximar sin(1)\displaystyle\sin(1) con el polinomio de Taylor de grado 3\displaystyle 3 de la funcion sinx\displaystyle\sin x centrado en el x0=0\displaystyle x_{0}=0. Ademas, proporciona una cota optima para el error cometido.

P3,0,sinx(x)=xx36sin1116=0,8333\displaystyle P_{3,0,\sin x}(x)=x-\frac{x^{3}}{6}\Rightarrow\sin 1\approx 1-% \frac{1}{6}=0{,}8333

El error cometido es: Error =sin1P3,0,sinx(1)=sin(c)4!(10)4\displaystyle=\sin 1-P_{3,0,\sin x}(1)=\frac{\sin(c)}{4!}(1-0)^{4} con c(0,1)\displaystyle c\in(0,1). Por tanto,

|Error ||sin(c)4!(10)4|124.\displaystyle\left|\text{Error }\right|\leq\left|\frac{\sin(c)}{4!}(1-0)^{4}% \right|\leq\frac{1}{24}.

Nos gustaria resolver lı´mxx0f(x)h(x)g(x)\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to x_{0}}% \frac{f(x)\cdot h(x)}{g(x)}, sabiendo que f(x)Pn,x0,f(x)=f(n)(x0)n!(xx0)n\displaystyle f(x)\approx P_{n,x_{0},f}(x)=\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^% {n}.

Por ejemplo,

  •  

    lı´mx0sinxx=lı´mx0xsin(c)2!x2x=lı´mx01sinc2!x=1\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0}\frac{% \sin x}{x}=\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0}\frac{x-% \frac{\sin(c)}{2!}x^{2}}{x}=\mathop{\operator@font l\acute{{\imath}}m}\limits_% {x\to 0}1-\frac{\sin c}{2!}x=1.

  •  

    lı´mx0tanxsinxx3=lı´mx033!x3+Errorx3=lı´mx012+lı´mx0Errorx3=12\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0}\frac{% \tan x-\sin x}{x^{3}}=\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0% }\frac{\frac{3}{3!}x^{3}+\text{Error}}{x^{3}}=\mathop{\operator@font l\acute{{% \imath}}m}\limits_{x\to 0}\frac{1}{2}+\mathop{\operator@font l\acute{{\imath}}% m}\limits_{x\to 0}\frac{\text{Error}}{x^{3}}=\frac{1}{2} ya que tanxsinx3x3\displaystyle\tan x-\sin x\approx 3x^{3} (polinomio de Taylor de grado 3\displaystyle 3 en 0\displaystyle 0 ). f(0)=tan0sin0=0\displaystyle f(0)=\tan 0-\sin 0=0, f(x)=1+tan2xcosxf(0)=1+01=0\displaystyle f^{\prime}(x)=1+\tan^{2}x-\cos x\Rightarrow f^{\prime}(0)=1+0-1=0, f(2)(x)=2tanx(1+tan2x)+sinxf(2)(0)=0\displaystyle f^{(2)}(x)=2\tan x(1+\tan^{2}x)+\sin x\Rightarrow f^{(2)}(0)=0, f(3)(x)=2[(1+tan2x)(1+tan2x)+tanx(2tanx(1+tan2x))]+cosxf(3)(0)=2+10\displaystyle f^{(3)}(x)=2[(1+\tan^{2}x)(1+\tan^{2}x)+\tan x(2\tan x(1+\tan^{2% }x))]+\cos x\Rightarrow f^{(3)}(0)=2+1\neq 0. Error=f(n+1)(c)(xx0)n+1=f(4)(c)(xx0)4\displaystyle\text{Error}=\frac{f^{(n+1)}(c)}{(x-x_{0})^{n+1}}=\frac{f^{(4)}(c% )}{(x-x_{0})^{4}}. Por otro lado, lı´mx0f(4)(c)4!x4x3=lı´mx0f(4)(c)4!x=0\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0}\frac{% \frac{f^{(4)}(c)}{4!}x^{4}}{x^{3}}=\mathop{\operator@font l\acute{{\imath}}m}% \limits_{x\to 0}\frac{f^{(4)}(c)}{4!}\cdot x=0 porque c(0,x)\displaystyle c\in(0,x).

Entonces, siguiendo esta idea:

lı´mxx0f(x)h(x)g(x)=lı´mxx0f(x)(xx0)nlı´mxx0(xx0)nh(x)g(x)=f(n)(x0)n!lı´mxx0(xx0)nh(x)g(x)\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to x_{0}}% \frac{f(x)\cdot h(x)}{g(x)}=\mathop{\operator@font l\acute{{\imath}}m}\limits_% {x\to x_{0}}\frac{f(x)}{(x-x_{0})^{n}}\mathop{\operator@font l\acute{{\imath}}% m}\limits_{x\to x_{0}}\frac{(x-x_{0})^{n}\cdot h(x)}{g(x)}=\frac{f^{(n)}(x_{0}% )}{n!}\cdot\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to x_{0}}\frac% {(x-x_{0})^{n}\cdot h(x)}{g(x)}

ya que lı´mxx0f(x)(xx0)n=lı´mxx0f(n)(x0)n!(xx0)n+Error(xx0)n=f(n)(x0)n!\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to x_{0}}% \frac{f(x)}{(x-x_{0})^{n}}=\mathop{\operator@font l\acute{{\imath}}m}\limits_{% x\to x_{0}}\frac{\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}+\text{Error}}{(x-x_{0}% )^{n}}=\frac{f^{(n)}(x_{0})}{n!}.

Decimos que f(n)(x0)n!(xx0)n\displaystyle\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n} es el infinitesimo equivalente de f\displaystyle f cuando x\displaystyle x tiende a x0\displaystyle x_{0}.

Ejemplo.

lı´mx0tanxx\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0}\frac{% \tan x}{x} f(0)=tan0=0\displaystyle f(0)=\tan 0=0, f(x)=1+tan2xf(0)=1f(0)1!x=x\displaystyle f^{\prime}(x)=1+\tan^{2}x\Rightarrow f^{\prime}(0)=1\Rightarrow% \frac{f^{\prime}(0)}{1!}x=x Luego lı´mx0tanxx=lı´mx0xx=lı´mx01=1\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0}\frac{% \tan x}{x}=\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0}\frac{x}{% x}=\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0}1=1.

Ejemplo.

lı´mx0tanxsinxx3=lı´mx0xxx3=lı´mx00x3=lı´mx00=0\displaystyle\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0}\frac{% \tan x-\sin x}{x^{3}}=\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0% }\frac{x-x}{x^{3}}=\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0}% \frac{0}{x^{3}}=\mathop{\operator@font l\acute{{\imath}}m}\limits_{x\to 0}0=0. Esto esta MAL.